Dual Adversarial Graph Neural Networks for Multi-label Cross-modal Retrieval

نویسندگان

چکیده

Cross-modal retrieval has become an active study field with the expanding scale of multimodal data. To date, most existing methods transform data into a common representation space where semantic similarities between items can be directly measured across different modalities. However, these typically suffer from following limitations: 1) They usually attempt to bridge modality gap by designing losses in which may not sufficient eliminate potential heterogeneity modalities space. 2) treat labels as independent individuals and ignore label relationships are important for constructing links In this work, we propose novel Dual Adversarial Graph Neural Networks (DAGNN) composed dual generative adversarial networks multi-hop graph neural networks, learn modality-invariant discriminative representations cross-modal retrieval. Firstly, construct project Secondly, leverage layer aggregation mechanism is proposed exploit propagation information, capture correlation dependency inter-dependent classifiers. Comprehensive experiments conducted on two benchmark datasets, NUS-WIDE MIRFlickr, indicate superiority DAGNN.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Supervised Adversarial Hashing Networks for Cross-Modal Retrieval

Thanks to the success of deep learning, cross-modal retrieval has made significant progress recently. However, there still remains a crucial bottleneck: how to bridge the modality gap to further enhance the retrieval accuracy. In this paper, we propose a self-supervised adversarial hashing (SSAH) approach, which lies among the early attempts to incorporate adversarial learning into cross-modal ...

متن کامل

MHTN: Modal-adversarial Hybrid Transfer Network for Cross-modal Retrieval

Cross-modal retrieval has drawn wide interest for retrieval across different modalities of data (such as text, image, video, audio and 3D model). However, existing methods based on deep neural network (DNN) often face the challenge of insufficient cross-modal training data, which limits the training effectiveness and easily leads to overfitting. Transfer learning is usually adopted for relievin...

متن کامل

HashGAN: Attention-aware Deep Adversarial Hashing for Cross Modal Retrieval

As the rapid growth of multi-modal data, hashing methods for cross-modal retrieval have received considerable attention. Deep-networks-based cross-modal hashing methods are appealing as they can integrate feature learning and hash coding into end-to-end trainable frameworks. However, it is still challenging to find content similarities between different modalities of data due to the heterogenei...

متن کامل

Cross-language Learning with Adversarial Neural Networks

We address the problem of cross-language adaptation for question-question similarity reranking in community question answering, with the objective to port a system trained on one input language to another input language given labeled training data for the first language and only unlabeled data for the second language. In particular, we propose to use adversarial training of neural networks to l...

متن کامل

Tripartite Graph Models for Multi Modal Image Retrieval

Most of the traditional image retrieval methods use either low level visual features or embedded text for representation and indexing. In recent years, there has been significant interest in combining these two different modalities for effective retrieval. In this paper, we propose a tri-partite graph based representation of the multi model data for image retrieval tasks. Our representation is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2021

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v35i3.16345